- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Nabil, Mohammad (1)
-
Nourhani, Amir (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We revisit Brenner's seminal work on the Stokes resistance of a slightly deformed sphere (Chem. Engng Sci., vol. 19, 1964, p. 519), evaluate its range of validity and extend its applicability to higher deformations for axisymmetric particles, using hydrodynamic radius as the measure of Stokes resistance. Brenner's method solves the flow around a slightly deformed sphere through two mapping steps: the first mapping translates the surface velocity on the deformed sphere to that over a reference sphere of arbitrary radius using an asymptotic expansion of the flow field in terms of deformation amplitude and a Taylor expansion of the velocity field around the surface of the reference sphere. Subsequently, the second mapping extrapolates the velocity field from the surface of the reference sphere to any point in the fluid using Lamb's general solution for Stokes flow. While the original work addresses slightly deformed spheres to a linear order in deformation amplitude, we demonstrate that the first mapping, in combination with axisymmetric spectral modes (J. Fluid Mech., vol. 936, 2022, R1), can accommodate significant deformations to arbitrary orders of perturbation, and thus is not limited to slightly deformed spheres. Also, while first-order analysis is suitable for nearly spherical particles, second-order terms can provide a reasonable range for significantly higher deformations.more » « less
An official website of the United States government
